-All for dreams

RINGCONE
 Adjustable Speed Drive

 Series

Contents
Safety Precautions • 1
Operating Precautions • • . . 2
Storing Precautions • 4
Installation • 5
Operation • • 6
Special Lubricating Oil • . . . 8
Periodical Inspection • • . . • 11
Troubleshooting • • 11
Disassembly \& Reassembly • • 12

Safety Precautions

Thank you for purchasing the NIDEC DRIVE TECHNOLOGY product. To use this product properly and safely, please be sure to read this manual thoroughly before use. Keep this instruction manual where all users can read and/or refer to it at any time.

Precautions for installation

Do not connect this product to an power source
beyond the specified voltage range.
If you connect the product to an power source beyond the voltage
range indicated on the motor nameplate, the heated motor could
result in motor burns and fire.

Do not touch the keyway on the input and output
shafts with bare hands.
Be careful to touch the keyway. Failure to follow this could result in
injury on your hands or fingers due to the sharp edges.

Install the product on a rigid surface that is not prone
to vibration.
If the installation surface is not rigid enough, the machine could fall
over during operation or a device could be damaged due to excessive
vibration.

Do not install the product in an area with an ambient
temperature of lower than $0^{\circ} \mathrm{C}$ and higher than $40^{\circ} \mathrm{C}$.

Dis not connect the product with wet (or sweaty) hands. Before wiring, be
sure to turn the power OFF. Failure to follow this could result in electric
shock.

Disconnect the power supply for motor, when
connecting.

Before rotating the motor reversely, be sure to stop it completely.

Precautions for inspection and maintenance

[^0]

Do not touch the unit during operation and immediately after operation stops.
The housing temperature will not decrease immediately after operation stops. Confirm that the temperature of the product has decreased before touching for inspection and/or disassembly.

Operating Precautions

About this product

- Input Speed

- Allowable input speed: NRX-200B to $7500 \cdots 700 \mathrm{rpm}$ to 2000 rpm based on the standard specifications. NRX-11K to $18 \mathrm{~K} \cdots 900 \mathrm{rpm}$ to 1800 rpm

When using the product with a lower input speed than the above, please contact us.

Output Speed

- When using product continuously, use it in the middle and high-speed areas, which secures high efficiency.
- If a special request was not given at the time of order, the rotation speed is set to 0 rpm when a light load is applied.
- If you continuously use this unit in the low-speed area of $100 \mathrm{rpm}(* 1)$ or less, it could be susceptible to load changes, and the rotation speed might become unstable.

Middle- and high-speed areas... Indicates the range between 3 and MAX on the dial.

Dial Plate \& Load

- The output speed will not change as long as a load does not change. If a load changes greatly, however, the output speed might change even at the same dial plate position
- Note that the output speed might change if a load changes greatly. *We recommend using the automatic control when high accuracy is desired.

(*1) Output speed without the reducer

Lubricating oil

> Lubricating oil plays an important role, which can be used not only for power transmission, but also for burn, wear, rust prevention, and for cooling.
> Since lubricating oil greatly influences the performance of the product and service life, be sure to use the special lubricating oil only.

- Be sure to use the specified lubricating oil.
- Do not mix any other lubrication.
- If you use this product in an area with an ambient temperature of $0^{\circ} \mathrm{C}$ or less, or $40^{\circ} \mathrm{C}$ or more, heat- or cold-resistant lubricating oil is required.
- Since, unless otherwise requested, the speed drive is filled with the proper amount of lubricating oil before shipping, additional lubrication is not required.
- Check the oil level every day.
- Keep the replacement interval, and replace accordingly.
*Refer to "3 Special lubricating oil" described on page 8.
For purchase of the lubricating oil (special traction drive oil for the speed change section), contact us or any of the ENEOS Corporation offices.

Precautions during operation

- At initial operation, confirm the rotating direction of the output shaft, and gradually apply the load.
- The handle rotational direction and increasing or decreasing speed may depend on the handle mounting direction. For more information, please contact us.
- The surface temperature of the speed drive housing under normal operation can reach up to approximately $50^{\circ} \mathrm{C}$ higher than the ambient temperature.
- Switch between forward and reverse rotation after the motor (input) shaft stops completely.
- Never change the speed when operation stops.
- Be careful not to overload.
- NRX is an output torque limiting model. Especially in the middle- and high-speed areas, the speed drive may be overloaded even with the motor rated current value or less. For more information, please contact us.

Inspection

© If abnormal high temperature, noise, vibration, and/or oil leakage occur, stop operation immediately

 and contact us.
Daily inspection

- Check to ensure that the load condition is appropriate.
- Check to ensure that the speed drive housing temperature is not extremely high during operation (A temperature of up to approximately $50^{\circ} \mathrm{C}$ higher than the ambient temperature will not cause any problems).
- Check to ensure that there is no abnormal rolling noise with the bearings and/or traction drive parts.
- Check to ensure that abnormal vibration is not being generated from the speed drive.

<Lubricating oil inspection>

- Check to ensure that the lubricating oil is supplied to the appropriate indication level (check when operation stops).
- Check to ensure that the lubricating oil is not dirty, and that the degree of transparency is high.
- Check to ensure that there is no oil leakage
(for example, check oil seals on the input and output shaft parts, O-rings, oil gauge, and the area around the oil filling and drain ports).

Periodical inspection (every three months)

- Check to ensure that pulleys, sprockets, and speed drive mounting bolts are not loose.
- Check to ensure that there are no problems in the electrical system.
- Check to ensure that the load condition is appropriate.
- Replacement of lubricating oil
*Refer to "3-1 Special lubricating oil list" and "3-2 Replacement of lubricating oil", and use the special lubricating oil.

Storing Precautions

If you do not plan to use the product immediately after purchase, store it under the following precautions.

To store temporarily

(1) Store the product in a clean and dry place.
(2) If you store the product outdoors or in a humid place, put it in a box, seal the box, and cover with plastic sheets.
(3) When storing, attach a red rubber stopper into the air release plug, or set a plug stopper to prevent humidity from entering the product.

To store for a long period of time

1) When storing the product in outdoor areas subject to a lot of rain and/or humidity after installing on the site
(1) Cover the whole product with a water-proof sheet, and fix the sheet securely to prevent it from coming off due to strong wind, as well as to avoid entering rain and/or dust from clearance gap.
(2) If moisture is expected to evaporate from the ground, put the water-proof sheet underneath to prevent exposure to humidity from the evaporation, filling inside the sheet.
(3) When storing, attach a red rubber plug into the air release plug, or set a plug stopper to prevent humidity from entering the product.
(4) Set the cover on the motor terminal box, and seal the lead wire openings to avoid humidity from entering through the terminal box to the inside of the motor.
2) When storing the product indoors When there is less humidity, cover the product with a plastic bag, etc., and follow the procedures described in (3) and (4) above.
3) When storing the product for a long period of time, over a year, special rust-proofing specifications are required in addition to the above procedures.
4) Rust-proofing intervals and procedures

Rust-proofing interval		Within one year (our shipping standard)		Over one year to less than three years (our recommendation)		
Instructions at ordering		No particular instructions are necessary		"Special rust-proofing specifications" need to be instructed		
Rust-proofing area		Rust-proofing procedures at factory shipping	Rust-proofing oil agent	Rust-proofing procedures at factory shipping	Rust-proofing oil agent	Procedures after shipping
Exposed parts of the product, input/output shafts, and flange section		Input/output shafts After rinsing, wrap plastic tape around. Flange section After rinsing, apply the rustproofing oil agent to it, and pack the whole part with a plastic bag.	JIS K2246 NP-2 Idemitsu Daphne Evercoat PL, or equivalent	Input/output shafts After rinsing, apply the rustproofing oil agent to them, and wrap plastic tape around. Flange section After rinsing, apply the rustproofing oil agent to it, and pack the whole part with a plastic bag.	Equivalent to JIS K2246 NP-19 Taiyu Sabiden SAP D-15K, or equivalent	Check the condition of the rustproofing one year after shipping, and re-apply the rust-proofing oil, if necessary. After that, carry out the same procedure every year.
Inside of the product	Grease	Special grease supplied at shipping	-	Special grease supplied at shipping	-	No special procedures are necessary
	Oil	Special oil supplied at shipping (The air breather has been sealed)	-	Add special oil thoroughly inside the housing. (The air breather has been sealed)	-	Take the same procedures as in the left, two years after shipping. When starting operation, replace with new oil, and fill to the specified level.
Supplied oil cooler pump unit	Water-cooled system	Operate with special oil, and drain oil at shipping. (The air breather has been sealed) Eliminate water from pipes completely, dry, and seal the cooling water openings.	-	Add special oil thoroughly inside the unit. (The air breather has been sealed) Eliminate water from pipes completely, dry, and seal the cooling water openings.	-	Take the same procedures as in the left, two years after shipping. When starting operation, replace with new oil.
	Air-cooled system	Operate with special oil, and drain oil at shipping. (The air breather has been sealed)	-	Add special oil thoroughly inside the unit. (The air breather has been sealed)	-	Take the same procedures as in the left, two years after shipping. When starting operation, replace with new oil.

Note: Only when the export rust-proofing specifications or instructions are given, rust-proofing oil is applied to the input/output shafts even in less than one year.

Inspection during storage

Perform periodical inspection to check that the aforementioned storage procedures have been taken properly, and that the storing methods are correct.

Inspection before resuming operation

(1) Return the product to normal conditions from those taken for storage (such as for the amount of special oil).
(2) Since bearings may partially run out of grease resulting from the grease hardening during long-term storage, be sure to turn the motor shaft by hand from the fan side before operation, and check that there are no problems.
(3) Since exposed parts of rubber and/or resin parts in the oil seal, O-ring, and oil gauge, etc., may become deteriorated due to environmental influences, such as temperature, humidity, and/or ultraviolet rays, check those parts before resuming operation. If any deterioration is found, replace with new ones.

1 Installation

1-1 Installation

1. Avoid installing the product in a place directly exposed to rain or water.

- Consult us in advance if you use the product outdoors, or in a place exposed to dust or water.

2. Install the product in an area with an ambient temperature of between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

- If you plan to use the product beyond the above mentioned temperature range (at higher or lower temperature), be sure to consult us.

3. Securely fix the product using bolts on a solid installation bench that is not prone to vibration.

■ Install the horizontal type horizontally, the vertical type (with downward output shaft) and inverted type (with upward output shaft) vertically. Failure to follow this could result in malfunction due to poor lubrication.
For inclined installation, consult us.
4. Install the product in a way that provides easy access for inspection and maintenance.

- To make it easy to add and drain lubricating oil, install the product at a level of approximately 10 cm from the floor by securing a top clearance of approximately 30 cm .
- When installed the product into machines, place it so that the oil level can be checked externally, and lubricating oil can be easily replaced using pipes.
[Output shaft direction and installation direction]

[Installation conditions]

1-2 Connections

1. Allow a sufficient margin when setting the rotating speed and torque.

- When driving the mated machine at the maximum speed, connect the speed drive so that it also operates at the maximum rotation.
- For machines of which torque increases at the lower speed (such as those with constant horsepower characteristics), set the maximum torque to be within the rated torque of the speed drive.

2. When connecting the product, do not apply impact force and/or excessive thrust load on the output shaft (use tapping hole on the output shaft for 11 K to 18 K).
(a) Since the output shaft diameter dimension tolerance of the speed drive has been set to h 6 for 200 B to 7500 , and m 6 for 11 K to 18 K , set the hole tolerance of the coupling, pulley, chain sprocket, and gear, which are to be mounted, to H 7 for 200B to 7500 , and F7 for 11 K to 18 K . Then, push the output shaft into the hole by tapping with a wooden or plastic hammer. Pushing the shaft by hitting it hard could result in damage to bearings and/or the inside of the speed drive.
(b) Chamfer the hole mouth by approximately 1 mm .
(C)Make clearance of 0.1 mm to 0.2 mm for the key head.
(d)Hold and secure the key head using a set bolt.

Note: Make the effective diameter of the coupling, pulley, chain sprocket, and gear, etc. at least five times the output (input) shaft diameter of the speed drive. Be careful not to allow impact, vibration, and/or excessive thrust load from the machine to apply to the shaft ends. (For information about allowable shaft weight, refer to the catalog).

3.Ensure centering before connection.

- For connection with a coupling, properly align the speed drive shaft with the mated machine shaft.
- For connection with pulley, chain sprocket, and gear, etc., properly make the speed drive shaft parallel with the mated machine shaft, determine the correct center line, and fit precisely

Note: The output shaft rotation direction for the speed drive equipped with a Coronet speed reducer (N11, 17, 29, 35, 47, 59, 71 types) is the same as that of the input shaft

Since the forced cooling system has been adopted, be sure to connect the supplied oil cooler pump unit according to the following procedures.

- Install the oil cooler pump unit at the same level as the oil gauge level of the speed drive.
- Be sure to provide a separate power supply from the speed drive motor.

1 Connection method

- Since the speed drive has been shipped with the proper amount of special lubricating oil supplied inside, do not open the oil inlet (outlet) valves of the speed drive until all hoses have been connected completely.
1.Be sure to connect the main unit and oil cooler pump unit using the supplied rubber hoses (two pieces).
2.Connect "IN" of the connection manifold in the unit to the connecting port on the side of the oil outlet in the speed drive, and "OUT" to the connecting port on the side of the oil inlet in the speed drive.

2 Operation

2-1 Precautions before starting operation

1. Since, unless otherwise requested, the speed drive is filled with the proper amount of lubricating oil before shipping, additional lubrication is not required $*$
(Before use, check that lubricating oil has been supplied at the specified level of the oil gauge just in case).

* Note that models with the rod-shaped oil gauge have not been filled with lubricating oil.
- Before use, be sure to remove the (red) pressure-release rubber plug attached to the breather cap at the oil filling port. Also, for models equipped with the reducer (G, W, N types), be sure to remove the (red) pressure-release rubber plug attached to the oil port cap of the reducer.

2. Check that electrical wiring has been performed properly.
3.Check that connection to the mated machine has been performed properly (fitting conditions, centering, etc.).
3. At initial operation, confirm the rotating direction of the output shaft, and gradually apply the load.

2-2 Precautions during operation

1. Never turn the speed change handle when operation stops (when the motor is not running).
2. Be careful not to overload.
3.The surface temperature of the speed drive housing under normal operation can reach up to approximately $50^{\circ} \mathrm{C}$ higher than the ambient temperature.
4.If the following events occur, stop operation immediately, and inspect the unit. Take any necessary procedures.

Symptoms	Possible causes
- The temperature suddenly increases.	- The unit has been overloaded
- An abnormal, loud noise is suddenly generated.	- Lubricating oil has been excessively or insufficiently used,
- The rotation speed suddenly becomes unstable.	or has deteriorated. Or, a different type of lubricating oil has - Other abnormal events are found.
	- Bearings and/or drive surfaces have been damaged
	- Improper connecting conditions with the mated machine, etc.

* For more details on the above symptoms and possible causes of problems, refer to "5 Troubleshooting" on page 11.
5.Switch between forward and reverse rotation after checking that the motor (input) shaft has stopped operation completely. Instantaneous switching between forward and reverse rotation could result in malfunction.

2-3 Dial graduation and load

For NRX, the rotation will not change as long as the load does not change.
If a load changes greatly, however, the rotation speed will change even at the same graduation point.

1. Read the graduation on the dial depending on the load.
2. Note that the rotation speed will change if a load changes greatly.
(We recommend using the automatic control when high accuracy is desired).

(*1) Rotation speed for the type without the reducer

2-4 Operation of the oil cooler pump unit For NRXMK-18K (including models equipped with the reducer)

■ Operate the oil cooler pump unit according to the following procedures.
\square Be sure to provide a separate power supply to the pump unit from the speed drive motor.

1 Before operation, be sure to open the oil inlet (outlet) valves (two positions) of the speed drive.

* Operating the pump unit with those valves closed could result in malfunction of the pump unit.

2 Turn the power switch of the oil cooler pump unit ON, and confirm that there is no problem with oil feeding conditions between the speed drive main unit and pump unit, then turn the power switch of the speed drive ON.

Confirm that oil has been supplied at the specified level of the oil gauge in the speed drive

3 Confirm the rotation direction of the cooler pump unit motor.

1. Perform wiring so that the motor rotates in a counter-clockwise direction when viewed from the motor fan side.
2. For the indication position of the rotation direction, refer to the table on the right.

Model	Indication position
RXCA-01 RXCW-01	Indicated on the motor
RXCW-01-1 RXCW-01-2	Indicated on the pump unit

4 Inspection and cleaning of the oil filter

- The filter clogging condition will be indicated by "color" in the detector inside the filter on top of the oil cooler pump unit, depending on the degree of use. Blue \longrightarrow Normal \quad Yellow \longrightarrow Clean the element \longrightarrow White \longrightarrow Danger (clean or replace the element)
- When the detector indication ring turns yellow, remove the cover on top of the filter, and clean the element using light oil, etc.

Precautions for the water-cooled pump unit

- Check that water is always running in the oil cooler pump unit.
- If there is a risk of water freezing due to being in cold regions, a time of extreme cold, or when interrupting operation, remove the drain plug of the pump unit, and drain the water from it.
- Since accumulated water deposit inside the pump unit could result in a decrease in cooling function, clean the cooling water conduit once a year.
Note: When cleaning the water conduit, remove the water chamber covers on both sides.

Precautions for the air-cooled pump unit

- When removing the radiator, drain oil first, and remove the outlet/inlet pipes, four supporting bolts (6×15), two pan head screws on the fan side (4×50), fan, and then motor, in this order. If a large amount of oily dust is attached to the radiator, soak in a warm water solution with dissolved neutral detergent, and rinse in water. After that, blow compressed air on it.
- Clean oil deposit using solvent (Trichloroethylene) approximately once a year
(Deteriorated oil will be dissolved gradually in the solvent. Leave solvent inside for approximately 30 minutes).

3 Installation

3-1 Special Lubricating Oil

Lubricating oil plays an important role in power transmission, and also has various effects on burn, wear, and/or rust prevention, and/or cooling. Since lubricating oil greatly influences the performance of the product and product life, be sure to use the special traction drive oil for the speed change section. The type of lubricating oil differs between the speed change and speed reduction sections. In the event that different types of oil are used, sufficient performance may not be attained, or extension of the product life may be greatly influenced.

- The type of lubricating oil differs between the speed change and speed reduction sections. In the event that different types of oil are used, sufficient performance may not be attained, or extension of the product life may be greatly influenced.

Speed drive					Reducer type Speed drive model		Planetary/Pinion reducer			Inscribed planetary reducer				Worm reducer
Speed drive model	RX-60 to 3700 NRX-60 to 7500 ARX-60 to 750 SC-200E to 22000C O-200E to 1500E	$\begin{array}{r} R X-5500 \\ 7500 \\ N R X-11 K \\ 15 K \end{array}$	RX-11K to 15 K NRX-18K to 30K				$\begin{array}{\|c\|} R X-60 / 90 \\ N X-60 / 90 \\ A R X-60 / 90 \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{RX}-200 \mathrm{~B} \\ \mathrm{NRX}-200 \mathrm{~B} / 400 \mathrm{~B} \end{gathered}\right.$		$\begin{aligned} & \text { RX-90 } \\ & \text { NRX-90 } \\ & \text { ARX }-90 \end{aligned}$	$\substack{\text { RX } \\ \text { NR } \\ \text { AR }}$ $\substack{\text { SC-200E } \\ 0-200 E \\ \text { to }}$	$\mathrm{X}-200 \mathrm{~B}$ to $\mathrm{XX}-200 \mathrm{~B}$ to $\mathrm{RX}-400$ to to 3700 E to 1500 E		
Lubrication system	Speed change section			Gear section	Nominal reduction ratio		G3M / G5M	G3M / G5M	G3 / G5 / G6	G11 to G71	$\begin{aligned} & \mathrm{N}(\mathrm{G}) 11 \text { to } 71 \\ & \mathrm{C} 11 \text { to } 87 \end{aligned}$			W10 to W30
	Oil lubrication		Forced oil	Oil lubrication		$\begin{aligned} & \text { ducer frame } \\ & \text { mber } \end{aligned}$	-	-	-	A / B	A/B/C	D to G	H to N	-
						brication stem	Grease	Grease	Oil	Oil	Grease			Oil
Type	Special traction drive oil for the speed change section			$\begin{array}{\|c\|} \hline \text { JIS K } 2219 \\ \text { Industrial Gear } \\ \text { Oil Class 2 } \\ \text { ISO VG220 } \\ \hline \end{array}$	Type(Viscosity)			$\begin{gathered} \text { NLGI No. } 0 \\ \text { Grease } \end{gathered}$	$\begin{array}{\|c\|} \text { JIS K } 2219 \\ \text { Industrial Gear Oil Class } 2 \\ \text { ISO VG220 } \end{array}$	$\begin{array}{\|c\|c\|} \text { JIS K } 2213 \\ \text { Turbine Oil Class 2 } \\ \text { ISO VG46 } \end{array}$	NLGI No. 2 Grease		$\begin{aligned} & 2219 \\ & \text { Oil Class } 2 \\ & \text { Gi00 } \end{aligned}$	JIS K 2219 Industrial Gear Oil Class 2 ISO VG320
Idemitsu				$\xrightarrow[\text { Daphne Super }]{\text { ISO }}$		Idemitsu	$\begin{aligned} & \text { Daphne } \\ & \text { Coronex } \\ & \text { EP No. } 1 \\ & \hline \end{aligned}$	Daphne Polylex No. 0	Daphne Super Gear Oil 220	$\begin{aligned} & \text { Daphne Mechanic } \\ & \text { Oil } 46 \end{aligned}$	-	Daphne Sup	Gear Oil 100	Daphne Super Gear Oil 320
	RINGCONE Traction	RINGCONE Traction Drive Oil TD Oil 22				Eneos	$\begin{aligned} & \text { Epnoc } \\ & \text { Grease AP1 } \end{aligned}$	$\begin{aligned} & \text { Pyronoc Grease } \\ & \text { No. } 0 \end{aligned}$	Bonnoc TS220	FBK Oil RO46	-	Bonn	TS100	Bonnoc TS320
\% ENEOS				Bonnoc TS220		Mobil	$\begin{aligned} & \text { Mobilux } \\ & \text { PP No. } 1 \end{aligned}$	-	Mobilgear 600XP 220	DTE Oil Medium	-	Mobilgea	00XP 100	Mobilgear 600XP 320
$\begin{array}{\|l\|} \hline \text { Mobil } \\ \hline \begin{array}{l} \text { Showa } \\ \text { Shell } \end{array} \\ \hline \end{array}$				$\text { 600XP } 220$		Showa Shell	Alvania EP No. 1	Stamina RL No. 0	Omala S2G 220	Tellus S2M 46	-	Omala	G 100	Omala S2G 320
				$\underset{220}{\substack{\text { Omala S2G }}}$		Cosmo	Dynamax EP No. 1	-	Cosmo Gear SE 220	Cosmo Allpus 46	-	Cosmo	SE 100	Cosmo Gear SE 320
Cosmo				Cosmo Gear SE 220 SE 22		$\begin{aligned} & \text { Kyodo } \\ & \text { Yushi } \end{aligned}$	$\begin{aligned} & \text { Unilube } \\ & \text { DL No. } 1 \end{aligned}$	Excellite EP No. 0	-	-	-			-
Replacement interval	Every 20,000 hours,or every 4-5 years	Every 5,000 hours, or every year				Nippeco	-	-	-	-	NDS Grease			-
					Replacement interval		Every 20,000 hours. every ${ }^{\circ}-5$ 足 years		Every 5,000 hours, or every year			Every 5,000 hours, or every year		

Note 1. For lubricating oil supplied at shipping, contact us accordingly.
2. The oil replacement interval differs depending on conditions of use. In particular atmospheres subject to high humidity and/or active gas, shorten the replacement interval described in the above table.

- When using the product at especially low temperatures (approximately $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$) or high temperatures (approximately $40^{\circ} \mathrm{C}$ or more), heat or coldresistant lubricating oil and applicable internal parts are required. For details, consult us in advance.
- For purchase of special traction drive oil, contact us or any of the ENEOS Corporation offices.

3-2 Replacement of lubricating oil

- Speed change section

For special traction drive oil, the oil lifespan is extremely long, and the replacement interval is very long.

* For the replacement interval, refer to the above table.
- Speed reduction section

Replace lubricating oil described in the above table at the specified replacement interval.

3-3 Oil filling and draining

- Never mix different types of oil. Failure to follow this could result in adverse effect due to the change in oil quality.
\square Oil leakage could result in accidents. Wipe away oil spills at the time of filling or draining
[For the speed change section]
- Add oil up to the specified level of the oil gauge when the speed drive stops

Note: Continuing operation with insufficient oil could result in damage to internal parts. Check the oil level every day.

(200B, 400B, 750, 11K, or larger models)

(1500 to 7500)

Note: For the vertical type, be sure to set the unit vertically before adding oil. If oil is added with the unit placed horizontally, the amount of oil will differ, and proper lubrication management cannot be performed. If oil has been added excessively, remove the drain plug, and drain out surplus oil to adjust the amount.
[For the speed reduction section]

- The plug position in the center of the speed reduction section indicates the proper oil level. Remove the upper lubrication plug and level plug, and fill with oil until oil flows out of the level plug.

- For the grease lubricated system <Frame $\mathrm{A} / \mathrm{B} / \mathrm{C}$ of $\mathrm{N}(\mathrm{G}) 11$ to 71> additional refill is not required in the middle of the replacement interval When replacing oil, disassemble the unit for overhaul before lubrication.

Note: Before adding oil in the vertical type of models 200B to 1500, be sure to remove the attached pressure relief plug for lubrication, which can be used to release the internal air pressure. After adding oil, attach the pressure relief plug

3-4 Proper amount of oil, and oil filling/draining plug positions

NRX \square (L)

Model	Horizontal type	Vertical typeSpeed change section
200 B	0.2	0.4
400 B	0.2	0.4
750	0.5	1.0
1500	0.8	1.9
2200	1.8	2.7
3700	2.5	4.8
5500	2.8	5.4
7500	2.2	5.4
11 K	5.0	15
15 K	5.0	15
18 K	5.0	15

NRX $\square-\square$-G \square Planetary/Pinion reducer (L)

Model	Reduction ratio	Horizontal type		Vertical type	
		Speed change section	Speed reduction section	Speed change section	Speed reduction section
200B	G3M/G5M	0.2	Grease	0.4	Grease
400 B	G3M/G5M	0.2	Grease	0.4	Grease
750	G3/6	0.5	0.4	1.0	0.4
1500	G3/6	0.8	0.5	1.9	0.8
2200	G3/6	1.8	1.0	2.7	1.3
3700	G3/6	2.5	1.5	4.8	2.3
5500	G3/6	2.8	1.8	6.5	3.5
7500	G3/6	2.2	1.8	6.5	3.5
11 K	G3/5	5.0	9.0	15	18.2
15 K	G3/5	5.0	9.0	15	18.2
18 K	G3/5	5.0	9.0	15	18.2

NRX $\square-\square-$ W \square Worm reducer (L)

Model		Speed change section	Speed reduction section			
		H \quad U	V \square D	$\mathrm{V} \square \mathrm{U}$		
200B	W10/20/30		0.2	0.25	0.4	0.4
400B	W10	0.2	0.25	0.4	0.4	
	W20/30	0.2	0.5	0.6	0.6	
750	W10	0.5	0.5	0.6	0.6	
	W20/30	0.5	0.7	0.85	0.85	
1500	W10	0.8	0.7	0.85	0.85	
	W20/30	0.8	1.3	1.5	1.5	
2200	W10	1.8	1.3	1.5	1.5	
	W20/30	1.8	2.1	2.7	2.7	
3700	W10	2.5	2.1	2.7	2.7	
	W20/30	2.5	3.3	4.1	4.1	
5500	W10	2.8	3.3	4.1	4.1	
	W20/30	2.8	5.5	7.5	7.5	

NRX $\square-\square-\mathrm{C}_{\mathrm{C}}^{\mathrm{N}} \square$ Inscribed planetary reducer(L)

Model	Reduction ratio	Frame size	Horizontal type		Vertical type	
			Speed change section	Speed reduction section	Speed change section	Speed reduction section
200B	G11/17	A	0.2	Grease	0.4	Grease
	N29 to 71	B	0.2	Grease	0.4	Grease
400B	N11 to 71	B	0.2	Grease	0.4	Grease
750	N11 to 29	B	0.5	Grease	1.0	Grease
	N35 to 71	C	0.5	Grease	1.0	Grease
1500	N11 to 29	C	0.8	Grease	1.9	Grease
	N35 to 71	D	0.8	0.9	1.9	1.5
2200	N11 to 47	D	1.8	0.9	2.7	1.5
	N59 to 71	E	1.8	1.8	2.7	2.4
3700	N11 to 29	D	2.5	0.9	4.8	1.5
	N35 to 71	E	2.5	1.8	4.8	2.4
5500	N11 to 47	E	2.8	1.8	5.4	2.4
	N59/71	F	2.8	3.2	5.4	4.3
7500	N11 to 35	E	2.2	1.8	5.4	2.4
	N47 to 71	F	2.2	3.2	5.4	4.3
11K	C11 to 43	H	5.0	4.6	15	7
	C87	L	5.0	15	15	18
15K	C11 to 43	H	5.0	4.6	15	7
	C87	L	5.0	15	15	18
18K	C11/21	H	5.0	4.6	15	7
	C29/43	L	5.0	15	15	18

200B to 7500

4-1 Daily inspection

1.Check to ensure that the speed drive housing temperature is not extremely high during operation

* A temperature of up to approximately $50^{\circ} \mathrm{C}$ higher than the ambient temperature will not cause any problems.
2.Check to ensure that there are no abnormal rolling sounds with the bearings and/or friction transmission parts.
3.Check to ensure that abnormal vibration is not being generated from the speed drive.
* If any of these abnormal events occur, stop operation immediately, disassemble and inspect the unit, or contact us. 4.Confirm that oil has been supplied at the specified level of the oil gauge (Check when the unit stops).
5.Check to ensure that the oil has not been contaminated. Check to ensure that oil gauge is transparent enough.
6.Check to ensure that there is no oil leakage anywhere (for example, in oil seals on the input and output shaft parts, O-rings, oil gauge, and/or the area around the oil filling and drain ports, etc.).
* If any oil leakage occurs, replace the necessary parts, or contact us.

\section*{4-2 Periodical inspection | (apporxinately a t least |
| :---: |
| every hree monthe |}

1.Check to ensure that there is no excessive overload.
2.Check to ensure that pulleys, sprockets, and speed drive mounting bolts are not loose.
3.Check to ensure that there are no problems in the electrical system.
4. Inspect and maintain major parts.

* If abnormal sounds occur inside of the speed drive, stop operation immediately, disassemble and inspect the unit, or contact us.
5.Check to ensure that the specified time of replacement for lubricating oil has not passed.
* Check to ensure that oil level has not decreased, and that it's not dark in
color. Check the specified replacement interval.

5 Troubleshooting

If problems or malfunction have occurred in the unit, and disassembly inspection is required, refer to the disassembly and reassembly figures on the following pages, and perform accordingly (refer to "5Troubleshooting" on page 11).

Note: Since models larger than the medium-scale type (1.5 kW type), and those equipped with the reducer have heavy parts, hoist or crane equipment may be required at the time of disassembly and reassembly.

Note: When disassembly and reassembly are performed by our workers, please have your company remove and mount the speed drive.

6-1 Disassembly procedure

(1) Remove the plug from the oil drain port, and drain oil completely.
(2) Remove the top cover.
(3) Remove the output shaft assembly from the main unit.
(4) Remove the cam assembly from the output shaft assembly.
(5) Remove the cone assembly.
(6) Remove the ring assembly.
(7) Remove the input disc from the motor shaft.

- Inspection \& Washing
- After disassembly, inspect each part, and wash all parts with washing oil.
- Replace defective parts with normal ones.

Keep all disassembled parts away from dust until reassembly.

6-2 Reassembly procedure

- Perform reassembly in the reverse order of disassembly.
- Put packing in joint parts between the M flange/output shaft holder/motor and the main unit housing/covers. In such cases, replace deformed or cracked packing with normal one.
* When reassembly is complete, adjust pressure contact force inside according to "6-3 Shim (pressure contact force) adjustment" .

6-3 Shim (pressure contact force) adjustment

- Since shim (pressure contact force) has been sufficiently adjusted at shipping, readjustment is not necessary before use.

When disassembly and reassembly have been performed due to unavoidable circumstances, readjust shim according to the following procedure.

NRX
\square *For models with the reducer, refer to the respective page.

- Adjustment procedure

When reassembly is complete after disassembly, in order for the "automatic pressure adjustment mechanism" to function effectively, adjust pressure contact force using the shim inside the bearing cover.
-When reassembling the speed change section, move the ring to the low speed end (output shaft) in advance.

- Procedure

(1) Tighten the bearing cover completely.
(2) Mount a pulley on the output shaft, and manually turn the pulley from side to side to seat internal parts.

(3) When turning the pulley from side to side, check that output shaft backlash is within the range of values in the table below. If backlash is too large or small, remove the bearing cover, and adjust to the normal value by increasing or decreasing the shim (0.1 mm to 0.2 mm thick).

Model	Output backlash
$200 \mathrm{~B} / 400 \mathrm{~B}$ $750 / 1500$	1° to 3°
2200	After adjusting to 1° to 3°, add a shim 0.2 mm thick.

(4) When shim (pressure contact force) adjustment is complete, mount the top cover, and set the dial.
Under no load, align the mating mark with 0 (zero) for NO LOAD on the dial, and tighten using the bolt.

NRX $\square-3700$ to 18 K
Adjust by clearance between the cam disc and input cam

(3) Remove the top cover.
(4) Look into the inside of the main unit, and check that clearance between the cam disc and input cam is within the range of values in the table below. If clearance is too large or small, remove the bearing cover, and adjust to the normal value by increasing or decreasing the shim (0.1 mm to 0.2 mm thick).

Model	Clearance of the cam disc
3700 to 18 K	Adjust clearance to 0 to 0.1 mm , and add a shim 0.1 mm to 0.15 mm thick (0.05 mm to 0.1 mm thick when applying pressure).

(5) When shim (pressure contact force) adjustment is complete, mount the top cover, and set the dial.
Under no load, align the mating mark with 0 (zero) for NO LOAD on the dial, and tighten using the bolt.

NRX $\square-\square-\mathrm{G} \square$ with planetary reducer
NRX $\square-\square-\mathrm{W} \square$ with worm reducer

- When reassembly of the speed change and reduction sections is complete after disassembly, adjust pressure contact force according to the following procedure.
- When reassembling the speed change section, move the ring to the low speed end (output shaft) in advance.

- Procedure

(1) Remove the top cover in the speed change section, look into the inside, and adjust pressure contact force according to the following procedure.
(2) Only for W type (with worm reducer), loosen the hexagon socket set screw. *Refer to the disassembly and reassembly diagram for the worm reducer section on page 19

NRX $\square-200 \mathrm{~B}$ to 2200-G \square
NRX $\square-200 \mathrm{~B}$ to $2200-\mathrm{W} \square$
Adjust by cam retainer backlash

(3) Hold the cam retainer with pliers, etc., and check that the total backlash is within the range of values in the table below. If backlash is too large or small, remove the bearing cover (HS blind cover for W type), and adjust to the normal value by increasing or decreasing the shim (0.1 mm to 0.2 mm thick).

Model	Cam retainer backlash
$200 \mathrm{~B} / 400 \mathrm{~B}$	1° to 3°
$750 / 1500$	After adjusting to 1° to 3°, add a shim 0.2 mm thick.
2200	

$$
\begin{aligned}
& \text { NRX } \square-3700 \text { or larger }-\mathrm{G} \square \\
& \text { NRX } \square-3700 \text { or larger }-\mathrm{W} \square \\
& \text { NRX } \square-11 \mathrm{~K} \text { to } 18 \mathrm{~K}-\mathrm{C} \square \mathrm{H} / \mathrm{L}
\end{aligned}
$$

Adjust by clearance between the cam disc and input cam
(3) Look into the inside of the speed drive, and check that clearance between the cam disc and input cam is within the range of values in the table below. If clearance is too large or small, remove the bearing cover (HS blind cover for W type), and adjust to the normal value by increasing or decreasing the shim (0.1 mm to 0.2 mm thick).

Model	Clearance of the cam disc
3700 to 18 K	Adjust clearance to 0 to 0.1 mm , and add a shim 0.1 mm to 0.15 mm thick (0.05 mm to 0.1 mm thick when applying pressure).

(4) Only for W type (with worm reducer), tighten the hexagon socket set screw after shim (pressure contact force) adjustment.
(5) Set the dial.

* Refer to the procedure for the standard NRX \square on page 12.
\qquad with CORONET reducer
- When reassembly of the speed change and reduction sections is complete after disassembly, adjust pressure contact force according to the following procedure.
- When reassembling the speed change section, move the ring to the low speed end (output shaft) in advance.
- Procedure
(1) Put a rod (T-wrench) etc. into the ER flange adjustment hole, and align the ER flange and adjuster surfaces on the same level by turning the adjuster. After that, assemble the main units of the speed reduction and change sections

(2) Remove the top cover in the speed change section, look into the inside, and adjust pressure contact force by turning the adjuster with a rod (T -wrench) etc. according to the following procedure.
(3) Check pressure contact force adjustment according to the tables below.
(Turning the adjuster clockwise increases contact force, and turning counterclockwise decreases contact force when viewed from the output shaft)

NRX $\square-200 \mathrm{~B}$ to $2200-\mathrm{N} \square$
Adjust by cam retainer backlash

(4) Hold the cam retainer with pliers, etc., and check that the total backlash is within the range of values in the table below. If backlash is too large or small, turn the ER flange adjuster, and make adjustment.

NRX $\square-3700$ to $7500-$ N \square
Adjust by clearance between the cam disc and input cam

(4) Look into the inside of the speed drive, and check that clearance between the cam disc and input cam is within the range of values in the table below.
If clearance is too large or small, turn the ER flange adjuster, and make adjustment.

Model	Clearance of the cam disc
3700 to 7500	After adjusting clearance to 0 to 0.1 mm , turn the adjuster by one pitch to increase contact force

(5) When shim (pressure contact force) adjustment is complete, secure the adjuster using the fixing bolt, and set the blind bolt on the other side. Note: The fixing bolt is used to keep the adjuster from turning. Keep the tip of the bolt from coming into contact with the bottom of the adjuster.

(6) Set the dial.
*Refer to the procedure for the standard NRX \square on page 12.

Disassembly and reassembly diagram for speed change section 1 NRXM (K) -200B to 7500

750 to 7500 GB / GE
Bearing name number 200B/400B G3M/G5M
200B/400B G3M/G5M
Bearing name number list

2A, 2B, 2C, 20: Bal beaning (ZZZ metal seal type)
Oil seal name number list

Model Seal position	Output shaft $2 R$	Input shaft 2 S
$200 \mathrm{~B} / 400 \mathrm{~B}$	D 25408	S 20358

 $\mathrm{O}_{2 \mathrm{O}}^{0}$
 ${ }_{218}{ }^{219}$ 1500 to $7500{ }^{-111}$ $\mathrm{D}^{0} 0^{\circ}$ (bi) (20) ${ }_{218}^{219}$ 2 ${ }_{220}{ }^{2 F}$

N11 to N71 Frame D, E, F / NRXM (K) -1500 to 7500-NDD, NDE, NDF

Seal position		Output shaft FR
Frame size	Reduction ratio	($11,17,29,35,47,59,71$
D 751001		
E	$\mathrm{N} 11,17,29,35,47,59,71$	D 8511013
F	$\mathrm{N} 11,17,29,35,47,59,71$	D 11014014

3A: LLu for the inverted type
3D: zz for the vertical type
Oil seal name number
Example of disassembly procedure
1 Remove the hexagon socket plug, and drain oil.
2 Remove the bearing cover.
4 Remove the base.
5 5 the output shaft.

345 Spacer
370 Packing (on the output shaft side) 371 Packing (on the input shaft side)
372 Packing (bearing cover part)

 3R, 3S: Oil seal

Disassembly and reassembly diagram for automatic control specifications speed change section

NIDEC DRIVE TECHNOLOGY CORPORATION

〈Web Page Information〉 Please scan the QR code or access the URL below.

Contact Us
https://www.nidec.com/en/nidec-drivetechnology/inquiry/

Sales Offices
https://www.nidec.com/en/nidec-drivetechnology/corporate/network/sales/

Copyright NIDEC DRIVE TECHNOLOGY Corporation. All Rights Reserved

[^0]: Turn the power OFF during inspection.
 Confirm the power source complete off before inspection \& maintenance.

